Guest David Posted December 11, 2010 Report Share Posted December 11, 2010 The ASACUSA1 experiment at CERN2 has taken an important step forward in developing an innovative technique for studying antimatter. Using a novel particle trap, called a CUSP trap, the experiment has succeeded in producing significant numbers of antihydrogen atoms in flight. This result is published today in the journal Physical Review Letters. Antimatter – or the lack of it – remains one of the biggest mysteries of science. Matter and its counterpart are identical except for opposite charge, and they annihilate when they meet. At the Big Bang, matter and antimatter should have been produced in equal amounts. However, we know that our world is made up of matter: antimatter seems to have disappeared. To find out what has happened to it, scientists employ a range of methods to investigate whether a tiny difference in the properties of matter and antimatter could point towards an explanation. One of these methods is to take one of the best-known systems in physics, the hydrogen atom, which is made of one proton and one electron, and check whether its antimatter counterpart, antihydrogen, consisting of an antiproton and a positron, behaves in the same way. The challenge is to create antihydrogen atoms, and keep them away from ordinary matter for long enough to study them. ASACUSA’s CUSP trap uses a combination of magnetic fields to bring antiprotons and positrons together to form antihydrogen atoms, and then channel them along a vacuum pipe where they can be studied in flight. So far, only a few antihydrogen atoms have been produced in this way, but the experiment’s ultimate goal is to produce enough to investigate their behaviour in detail with the help of microwaves. ASACUSA’s approach is complementary to that of the ALPHA experiment, which reported new results in the journal Nature on 17 November. The procedures used to form antihydrogen build on techniques developed by a third antihydrogen experiment at CERN, ATRAP, which pioneered trapping techniques in the 1990s, and is also working on trapping antihydrogen. “With these alternative methods of producing and eventually studying antihydrogen, antimatter will not be able to hide its properties from us much longer,” said Yasunori Yamazaki of Japan’s RIKEN research centre and a team leader of the ASACUSA collaboration. “There’s still some way to go, but we’re very happy to see how well this technique works.” CERN is the only laboratory in the world that operates a dedicated low-energy antiproton facility. As far back as 1995, the first nine atoms of antihydrogen were produced at CERN. Then, in 2002, the ATHENA and ATRAP experiments showed that it was possible to produce antihydrogen in large quantities, opening up the possibility of conducting detailed studies. Today, CERN’s antihydrogen experiments are well on the way to investigating this rarest of atoms. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.